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Abstract

In modern multiphase materials, damage initiation and growth during plastic deformation is a commonly observed and tech-
nologically relevant process. To reliably assess the state of damage in a specimen or, ultimately, a formed product, precise
and comparable damage quantification is required. Furthermore, the key to understanding the initiation and evolution of voids
in such materials is the characterization of the initiating microstructural mechanisms in a statistically relevant way over a
large number of damage sites. In this work, we present the results of large-scale scanning electron microscopy methods for
automated damage recognition and analytical characterization, together with a concept for joining the available void size
statistics to micromechanical experiments such as micro-cantilever tests. These tests are able to determine a critical crack
length for various types of void initiation processes, leading to an improved understanding of the consequences of ductile
damage evolution and void growth, and their subsequent interaction leading to material failure. In this way, a framework for
quantification and high-resolution characterization of damage mechanisms is constructed, enabling new insights on damage
evolution in forming processes.
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1 Introduction

Damage-tolerant design for both forming processes and the
applied materials has gained substantial interest in recent
years. This is largely due to the rise in demand for high-
strength materials that equally incorporate good ductility
and formability, which is commonly addressed by the use of
multi-phase materials [1]. For modern steels, these favour-
able properties are achieved by the class of advanced high
strength steels (AHSS) that covers TRIP (transformation-
induced plasticity) and TWIP (twinning-induced plasticity)
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steels, as well as dual- and complex-phase steels [2]. In the
context of automative applications, the main driving force
for this development is the ongoing search for materials that
enable a weight reduction in crash-relevant components,
while maintaining strength and ductility for optimum form-
ability and performance [3]. However, the complex, multi-
phase microstructures lead to a high internal mechanical
contrast during plastic deformation. Especially in the field
of dual-phase steels, extensive research has been done to
understand the principles of initiation and evolution of voids
during deformation [4—7]. In addition to the microstructural
processes that originate in the variations of mechanical prop-
erties between different phases, microscale voids can also
occur at non-metallic inclusions [8]. Understanding damage
formation processes during forming is essential for assessing
a product’s properties as well as estimating and enhancing
the expected service life time.

While efficient characterization to quantify the dam-
age-induced degradation of mechanical properties is pos-
sible by testing macro-scale specimens or even formed
parts [9], direct characterization of the microscale voids
induced during deformation using microscopy requires
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high resolution imaging of the material. To reliably quan-
tify damage in a deformed specimen large fields of view
are required to deliver an assessment backed by sufficient
statistical relevance. Damage characterization for dual-
phase steels has extensively been performed in terms of
determining the underlying microstructural mechanisms,
namely the cracking of martensite islands, and the decohe-
sion of interfaces between ferrite and martensite as well as
at ferrite grain boundaries [8, 10]. As the interplay of these
mechanisms is typically complex, a large fraction of voids
will evolve based on several of these mechanisms includ-
ing both brittle and ductile mechanisms, such as in the
plastic flow of ferrite around a martensite crack [11, 12].
Additionally, agglomeration of voids in microstructural
features at larger scales, such as martensite bands, has to
be considered [7].

While X-ray tomography is frequently used in the context
of damage void analysis, this technique is typically limited
in terms of spatial resolution and investigated volumes,
with void sizes of the order of 5 um detectable in X-ray
microtomography [13, 14], sub-um resolution is attainable
in X-ray nanotomography and using synchrotron radiation
[14, 15]. However, in both cases, limitations in sample size
may prevent statistically relevant analysis of all emerging
microstructural damage events [15]. SEM-based solutions
therefore deliver the highest spatial resolution for quantify-
ing individual void sizes, while, coupled to modern image
processing and recognition tools, maintain a large field of
view through automated image acquisition and void recogni-
tion. Microstructural features like the martensite distribution
in the microstructure can be evaluated using image recogni-
tion tools [16]. Analytical detectors like EBSD and EDX
additionally enable the further analysis of the interplay of
microstructure and voids. In principle, these methods can
also be extended to the third dimension using mechanical
or ion beam based thinning techniques, such as for example
3D EBSD, although these methods are very time consuming
and, in contrast to X-ray tomography, intrinsically desctruc-
tive [17].

From these methods, statistics about present void sizes,
mechanisms and geometries in the microstructure can be
correlated with microscale deformation experiments, such as
micro-cantilevers, micro-pillars and nanoindentation. These
yield information about the local plasticity, fracture or deco-
hesion behavior of individual phases and interfaces [18-20].
In addition, their application at different strain rates and tem-
peratures permits the extraction of constitutive equations and
identification of the underlying deformation mechanisms
[21-24]. Based on the findings of these advanced tools for
characterizing microstructural features as well as damage
initiation processes, several modeling approaches have been
implemented to simulate material deformation and damage
behavior [25, 26].

@ Springer

In this work, we propose a framework of automated micros-
copy methods to gain multi-scale information about damage
during forming ranging from damage quantification over
identification of the dominant damage mechanisms to under-
standing these individual mechanisms of void initiation at the
scale of plasticity and fracture of individual phases and inter-
faces. Two approaches based on scanning electron microscopy
(SEM) are presented here incorporating automated imaging,
void detection, void classification and quantification over large
sample areas of the scale of amm?. The two methods are com-
plementary in their analysis with both separating voids caused
by inclusions from those induced by deformation, but one rely-
ing on analytical determination of inclusion composition via
EDX and the other classifying detected voids regarding their
nucleation mechanisms using convolutional neural networks.
The statistically relevant, yet microscopically resolved damage
characterization from both of these methods is compared with
results typically obtained by light microscopy. While applica-
tion of high resolution, large scale testing is shown to provide
much more information with respect to the underlying dam-
age mechanisms compared with light microscopy, ultimately,
imaging alone will not be satisfactory in when setting out to
unravel the origins of the local damage initiation mechanisms.
To this end, local mechanical testing of the plasticity of indid-
ivual phases and interfaces is required. Over the last years,
micromechanical methods have been developed which have
the potential to achieve this. We therefore also apply microcan-
tilever bending tests to illustrate the extension of microscopic
observation towards microscopic mechanical characterization
to ultimately enable a mechanism-based understanding of
damage that will allow purposeful tailoring of microstructures
including their local mechanical properties to delay or prevent
the accumulation of damage and the formation of catastrophic
damage events during forming and application.

In the following, we will intitially describe each of the
light and electorn microscopy methods employed for micro-
scale quantification of deformation- and inclusion-induced
damage. Finally, we present micro-cantilever bending as
a method which will allow the extension of microscopic
observation towards correlative micromechanical testing.
For all characterization experiments, a single sample of a
commercial dual phase DP800 steel was used. This ensures
direct comparability of results and allows us to discuss the
advantages and disadvantages of each method as well as
their limitations.

2 Methods of microscale damage
quantification

Of the various methods commonly used for imaging and
characterization of microstructural voids, this work focuses
on direct, metallographical investigation of planar samples
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to characterize microstructural damage in the form of
deformation-induced voids (in contrast to voids induced by
prior processing steps or inclusions). The classically applied
method of light microscopy is compared to two state-of-
the-art SEM-based approaches, one relying on analytical,
energy-dispersive X-ray spectroscopy (EDX) to characterize
the origin of voids, and the other applying a deep-learning
approach using convolutional neural networks to distinguish
between void initiation mechanisms. Both methods operate
with the same spatial resolution (32 nm/px), while maintain-
ing the ability to image large areas of several hundred pum?,
due to automation of image acquisition, void identification,
damage classification and data processing. Here, all inves-
tigations have been carried out on the same, polished sur-
face of a commercial DP8O0O steel grade deformed in tensile
loading to 14% strain, so that the obtained results from each
method can be directly compared.

2.1 Light microscopy

Light microscopy is widely used for damage assessment,
as it is a readily available method in any metallographic
laboratory. To detect small, deformation-induced voids,
specific sample preparation routines are necessary to
reveal voids created during processing. Usually, for light
microscopy, samples are ground in several steps, each
reducing the coarseness of the grinding paper, and after-
wards polished with diamond paste using a particle diam-
eter of the order of 1 ym. If the material’s microstructure
is of interest, the specimen is then etched for observa-
tion to reveal individual phases or grain boundaries. For
observation of voids, a polished sample is used, since on
a clear surface, voids (and inclusions) will show as black

dots. However, this preparation method is problematic,
since during sample preparation, the voids may be covered
with material removed elsewhere on the surface. Thus,
after polishing a separate step is needed, that commonly
involves immersion in an etching agent.. Here, the mate-
rial is etched for a very short time between 1 and 3 sin 1%
Nital. Afterwards, the specimen is, again, polished. This
intermediate etching dissolves the material covering the
voids and thus makes them detectable under light optical
microscopes.

After the sample is prepared as described above, it is
possible to analyze the state of the sample in terms of its
void content with minimal contrast from the underlying
microstructure. In Fig. 1a), a typical image of a sample
prepared by intermediate etching can be seen. The dif-
ferentiation between voids and inclusions cannot be made
by light microscopy, as the observed black areas can be
both voids or inclusions. Since most of the sampled areas
are large enough (multiple um in diameter) it is to be
expected, that a large proportion of these areas are formed
around inclusions, and do not correspond to deformation-
induced voids.

Since this method allows inspection of a large area
within a small timeframe, it is considered suitable for
qualitative analysis of the damage state, while for a quan-
titative analysis the following SEM-based methods are
more apt.

In addition, it is important to choose the magnifica-
tion for the analysis very carefully to balance speed and
detail of examination, bearing in mind that a qualitative or
comparative determination of damage is usually the main
objective in light microscopy.

(a)

(b)

10 pm

g

200 pm

Fig. 1 a Identification of voids by light microscopy (voids identified in green), and b by SEM allowing separation of deformation-induced voids

from inclusions (yellow) (color figure online)
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2.2 Automated SEM and damage analysis using
deep learning

To realize a significantly higher spatial resolution, SEM is
applied to resolve all voids down to the sub-um scale con-
tained in the microstructure. Statistical relevance, however,
has to be maintained to gather meaningful data about void
size and the overall state of damage in the observed speci-
men. Therefore, an automated panoramic imaging approach
[11] (Fig. 2) using a Zeiss Leo 1530 FEG-SEM (Carl Zeiss
Microscopy GmbH, Jena, Germany) is chosen here to obtain
micrographs with 32 nm/px resolution. The panoramicimage
is stitched together from individual, overlapping images via
a Matlab script based on VLFeat image toolbox [27]. The
images are obtained using secondary electron detection.
To unravel dominant damage mechanisms in a specific
sample, statistically sound data needs to be obtained, lead-
ing to a large amount of voids to be classified according
to their mechanisms of initiation. As morphological differ-
ences visible in SEM images typically set apart these dam-
age mechanisms, using deep-learning based image recogni-
tion and analysis tools is regarded as a drastic improvement
in efficiency compared to a manual classification. Further-
more, no variations between the evaluating person have to
be considered when automating the process. In this way,
consistent data can be obtained from large sample areas

Image Processing

while minimizing the time needed for evaluation. The
steps of void recognition, and further analysis are depicted
in Fig. 2. The images are processed using a grayscale cut-
off coupled to a clustering algorithm [28] so that voids are
identified as black clusters and individually processed as
tensors of the size (250,250,1), corresponding to a 250 px
wide square around the detected void. The detected voids are
then entered into a first convolutional neural network trained
to identify voids caused by inclusions. For this purpose, the
network Inception V3 [29] is used. Thus, for DP steels in this
case, all voids caused by inclusions can be disregarded for
measurements of deformation-induced damage. The error
made when considering the area or site fraction of all voids,
i.e. deformation- and inclusion induced together, can, there-
fore, be calculated. It has been shown to reach values of the
order of 50% at low strains, where inclusion voids naturally
dominate, and diminish at high strains once the deformation-
induced damage fraction becomes large [11].

Where the underlying mechanisms of damage initiation
are of interest, a second convolutional neural network is used
and trained to further classify the deformation-induced voids
with respect to their mechanisms of initiation. As deforma-
tion-induced voids are typically smaller than inclusions, the
processed tensors are cropped to a size of (50,50,1) around
the void for this process step. Subsequently, all deformation-
induced voids are passed over to a watershed algorithm to

Damage
Classification

y 4

3 pm

Fig.2 Void recognition, classification and area measurement approach for panoramic SE-images using deep learning for damage classification

(CNN convolutional neural network). Adapted from [11]
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measure their area individually, so that detailed area statis-
tics of void origin and size are obtained concurrently. The
method is described in more detail in [11] and has also been
applied to statistically assess damage formation on the scale
of bent sheet metal samples formed using two different bend-
ing processes [30]. The accuracy for the first network, that is
used in this work, reached an accuracy of 95 + 1%, trained
on a total of 4944 damage and inclusion sites and tested on
20% of these as test data.

2.3 Automated particle analysis by EDX

To distinguish deformation-induced voids from inclusion-
induced voids, the analytical method of EDX can also be
used, equally coupled to an automated SEM-based image
acquisition tool. This approach additionally reveals informa-
tion about the chemistry of the material forming the inclu-
sion by the obtained spectra.

Here, the damage quantification using automated EDX
particle analysis was performed in a JEOL JSM 7000F FEG-
SEM (JEOL, Akashima, Japan) using the particle analysis
software EDAX Genesis (Version 6.53, EDAX, New Jersey,
USA). Backscatter electron images are used due to the good
element contrast. Grayscale thresholds are selected to detect
all types of inclusion and voids. After image acquisition and
detection of voids and inclusions, EDX measurements are
performed on every detected object using automatic stage
shifts to allow investigation of large areas. After the meas-
urement finished, the element information is combined with

Fig.3 Automated EDX particle
analysis coupled to void recog-
nition and area measurements

1 BSEImage

the information obtained by the image to identify voids,
different types of inclusions and also preparation artifacts.
Additionally, morphology data, such as area or average
diameter are obtained.

Figure 3 exemplifies the steps in the used methodology:
first, a backscattered-electron (BSE) image is collected,
which subsequently undergoes a greyscale analysis. Two
different greyscale ranges are detected, the darkest regions
are marked in yellow, intermediate greyscales are marked
in green. As next step, EDX spectra are collected from all
marked objects. These steps are repeated in an automated
process to investigate larger areas. After all images and spec-
tra are recoreded, the objects are classified. An example of
this classification is shown in step 3 of Fig. 3. Even though
both spectra show characteristic x-ray lines of elements pre-
sent in inclusion and matrix, the combination of BSE grey-
scale and EDX spectrum leads to the classification result. In
the case shown in Fig. 3, the yellow region is interpreted as a
void in between two parts of a cracked TiN particle.

3 Results from void measurements

For all three applied microscopic void analysis methods, the
same area with a size of 700 X 700 um was analyzed, and
no further preparation apart from etching for the SEM pano-
ramic imaging approach was undertaken, so that results are
comparable. The field of view was identified using a central
indentation that was removed from the images before further

Next image

8 pm el

Fe

Post processing
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processing. Table 1 lists the overall void numbers, total void
area and area fraction obtained for the three methods. As
for dual-phase steels, the fundamental damage mechanisms
originate from the mechanical contrast between ferrite and
martensite, observed voids that have been classified as inclu-
sions by the respective methods have not been considered for
these statistics of deformation-induced damage.

While the detected number of voids is, with a deviation
in area fraction of 2%, comparable for the SEM-based meth-
ods, the lower-resolution light optical analysis shows a clear
difference in the number of detected voids with 376 total
voids, only about a third of the number of voids detected by
SEM. However, the measured area fraction shows a contrary
behavior: Here, the measured area is significantly higher for
the analysis by light microscopy with a measured area (frac-
tion) more than three times that measured by the SEM-based
methods. This trend is equally shown in a comparison of
cumulative void area as a function of individual void area,
as shown in Fig. 4. As cumulative statistics, scaled with the
void area, clearly show the contribution of the increasing
void sizes to the overall outcome in measured void area,
these have been chosen to illustrate the different detection
behavior of the used methods.

Here, all three methods show a similar behaviour for
small voids (<3 um?) with the optical microscope expect-
edly giving lower values than the SEM-based methods. For
larger voids above 10 pum, optical microscopy suggests much
larger void areas and a dominance of large void sizes. How-
ever, this is to be considered an artefact of the method as
these large voids are typically caused only by inclusions.
Using the SEM-based methods, these are readily recognized
and can be treated separately from the deformation-depend-
ent changes in void area.

As shown in Fig. 5, the SEM-based methods give similar
measurements of total void area, but with slight variations
in the cumulative void area as a function of individual void
size. The SE + Deep Learning approach detects more voids
in the range of 0.5 to 1.5 um?, while the EDX particle analy-
sis data yields more voids larger than 3 um?, with the maxi-
mum void size being 11.1 um?. As such a large void could
be expected to be at an inclusion, the largest detected void
was chosen for direct comparison between the two methods,

Table 1 Number, total area and area fraction of voids as detected by
each microscopy method

Number  Total area in um?>  Area fraction
SE+deep learning 1128 255.15 52x%107°
EDX analysis 1266 250.87 5.1x%107°
Light microscopy 376 824.00 16.8 x 1073

Note that in the case of both SEM-based methods, the measurements
have been corrected to exclude inclusions

@ Springer

Fig. 6b). Additionally, two smaller voids are shown in Fig. 6,
and their measured areas are compared.

As shown, the largest void observed by the particle analy-
sis is indeed due to an inclusion which was removed during
surface preparation. As the inclusion is no longer present,
elements not present in the matrix could only be detected
across parts of the void. In the EDX analysis, the whole
arrangement is therefore counted as a mixture of inclusion
and void. In contrast, the deep learning algorithm, which
relies on morphological appearance only, correctly classifies
this void in its entirety as an inclusion and therefore avoids
this error in classification and measurement. A difference of
3% in terms of measured void area results between the two
methods. The voids in Fig. 6a, ¢ show correct classification
by both the deep learning analysis as well as the EDX parti-
cle analysis. As one of the most dominant damage initiation
mechanisms, martensite cracks like this are of particular
interest in terms of characterizing site-specific microstruc-
tural damage processes. To determine critical cracks and
subsequently correlate these to the measured void data, this
mechanism will be regarded further using micro-cantilever
experiments.
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based and optical measurements

w
o
o

N

v

(=]
T

[y

(=}

(=]
T
1

Total Void Area in pm?
=
g

100 1
50 ——SE + Deep Learning| |
EDX Analysis
0 . 1 n n
0 2 4 6 8 10 12

Void Area in pm?

Fig.5 Cumulative void area versus individual void size for the SEM-
based void characterization tools only



Production Engineering (2020) 14:95-104

101

(a) (b) (c)
(=]
£
c
e
& ~
&
[}
Q . F L 2 um 5
1.514 ym? 10.783 pm?
-4
-g:\ T -
o & b ] _
s [ <Ay
we h ' @)
9 9
% EDX-SSISRERNES > epx: Zum  EDX: TiN Zym
1.519 pm? 11.109 um? 0.379 pm?

Fig.6 Comparison of results for classification of voids based on
deep learning and EDX analysis. a Void classified correctly by both
approaches as deformation-induced damage and further identified as

4 Micro-cantilever testing

To set the statistics of deformation-induced void sizes into
perspective to a critical void size for fracture of the brit-
tle microstructure constituents and interfaces, we used the
method of micro-cantilever bending.

Within this work, we are in particular interested in the
fracture toughness of martensite islands, non-metallic inclu-
sions and interfaces between martensite and ferrite, corre-
sponding to the main damage initiation mechanisms. The
example in Fig. 7 shows a micro cantilever consisting of
martensite, produced by focused ion beam (FIB) milling
[31-34]. It is designed in such a way that only the gauge
region close to the notch is a martensite island, and the entire
thick portion of the cantilever is a mixture of ferrite and
martensite. This geometry is required to suppress plastic-
ity in ferrite and force the crack to grow inside the mar-
tensite. The micro cantilevers are further tested in situ in
an SEM (Gemini 500, Carl Zeiss Microscopy GmbH, Jena,
Germany)—as exemplarily shown on the same martensite
island in Fig. 7. The load displacement signal is recorded
simultaneously with SEM images using an Asmec Unat II
indenter (ASMEC GmbH, Dresden, Germany) equipped
with a 10 um sized conductive diamond wedge.

From both, the force—displacement signal as well as from
the snapshots presented in Fig. 7, the elasto-plastic crack prop-
agation is evident. A thorough analysis of the crack resistance

a martensite crack by the deep learning approach, b void classified as
inclusion by deep learning, and as mixture of void and inclusion by
EDX, ¢ void classified as cracked inclusion by both approaches

curve—as for instance provided in references [35, 36]—is
needed to interpret the elasto-plastic fracture. For this purpose,
several loading—unloading cycles were applied to measure the
system compliance and derive the crack extension, required for
elasto-plastic fracture mechanics.

However, for simplicity, we do not analyze the elasto-plastic
fracture within this work and refer the reader to a thorough
investigation provided elsewhere. Instead, we focus on the
analysis of the linear elastic fracture mechanics and, as our
curve shows significant plasticity around the crack tip, we
will analyze the conditional toughness K, at which the crack
starts to grow (see Eq. 1a below). The corresponding geom-
etry factor was calculated by Matoy et al. [31], with F, as the
load at which crack growth starts, L, B and W the bending
length, the cantilever width and height respectively, and a the
crack length. The ratios W:B:L:a were maintained through-
out all experiments and are 1:1:5:0.2, according to [37, 38].
The sample height W is limited by the size of the martensitic
island, and was typically smaller than 1 pm for the DP80O steel
investigated here.

Ko = stsL/z f(%) (1)

f(%) = 1.46 + 24.36(%) —47.21(%)2 + 75.18(%)3
(Ib)
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Fig.7 a Micro-cantilever prepared for analyzing the fracture tough-
ness of a martensite island. b The load—displacement curve of the
bending test with several indicated unloading segments. c-g SEM

The force at which crack growth was observed is
0.080+0.005 mN in the example presented in Fig. 7. By
applying Eq. (1) and using the geometry of our bending
cantilever, we can compute a conditional toughness of
2.4+0.2 MPa m!2, Tt is noted that this is a lower bound
value for the fracture toughness of the investigated phase
and a thorough analysis of the crack resistance curve and
the J integral is required for comparison with macroscopic
toughness (cf. work on nanocrystalline ferrite in [39]).

5 Discussion

In this work, we presented two SEM-based approaches to
reliably and efficiently characterize void formation events
in a statistically sound way. This was demonstrated using
a commercial dual-phase steel subjected to tensile testing
as an example. Compared to the more classical analysis
of voids via metallographic preparation and subsequent
light microscopy, these methods showed a clearly obtain-
able improvement detecting more, and foremost, smaller
voids. While light microscopy is able to detect deformation-
induced voids, the higher-resolved SEM imaging methods
show that a much more quantitative approach to consider-
ing all deformation-induced voids can be executed using
higher-resolved SEM methods. This is due to two factors:
The much improved resolution of the SEM in comparison
to light microscopy and, for these novel approaches, the
ability to maintain the large field of view without introduc-
ing the requirement for regularly inaccessible or unfeasible
methods or equipment in the measurement process. Even in

@ Springer

snapshots of the martensite island to monitor crack growth. The num-
bers correlate the snapshots to the force—displacement curve in b

comparison with statistical approaches to microscale dam-
age as by Hoefnagels et al. [8], the field of view could be
drastically enlarged by not only detecting voids in an auto-
mated way [12], but also applying automated classification
of the observed voids [11]. Differences in the classifica-
tion between the analytical EDX approach and the deep-
learning-based image recognition approach were suspected
from the statistics shown in Fig. 5 and equally found in the
classification of voids as inclusions (Fig. 6). As the EDX
particle analysis is able to split between an inclusion and
void partition of a site, whereas the deep-learning method
distinguishes between inclusions and deformation-induced
voids only, these differences in classification can lead to an
advantage in accuracy for one of the two methods, depend-
ing on the material and its mechanisms of damage formation.
When deformation-induced damage mechanisms are based
on strain partitioning Other approaches have been performed
for microstructural classification to microstructural features
like phases and their distribution [16]. However, here, we
apply automation in a site-specific way to directly charac-
terize many individual damage events. The main benefit of
applying both presented approaches can therefore be found
in the interplay of deep learning based algorithms that are
capable of reliably classifying the detected microstructural
features, and the presented analytical approach, combin-
ing automated void detection with analytical detectors like
EDX. In this way, it is now possible to achieve a massively
enlarged statistical relevance for microscale damage events,
but coupled to an improved efficiency, that makes these high-
resolution approaches applicable for assessments of damage
processes in formed macrosocopic components [30] rather



Production Engineering (2020) 14:95-104

103

than micro-scale specimens only. Light microscopy can, as
it resolves the larger deformation-induced voids, deliver a
qualitative picture of the state of damage to the microstruc-
ture when efficient handling is a priority.

Combining these findings on void sizes and the local
mechanical data of microstructural elements obtained from
micro-cantilever bending experiments yields a thorough pic-
ture about the impact of void initiation and growth in dual
or multi phase materials. This approach can easily be trans-
ferred to any material composite with pronounced mechani-
cal heterogeneity, such as alloys with intermetallic skeletons
or large, hard particles [40].

The knowledge of a statistically sound void size distribu-
tion is equally critical for constructing a realmicrostructure-
based representative volume element and conducting crys-
tal plasticity finite element modeling (CP-FEM). The micro
cantilever fracture experiments—which result in a condi-
tional fracture toughness or even crack resistance curve of
individual grains, phases or interfaces—can finally be used
to predict void nucleation and growth. Besides this predic-
tive capabilities the combined method of analyzing pore size
distributions and toughness evaluation will allow for the
numerical optimization of damage tolerant microstructures
or forming processes suppressing damage.

6 Conclusion and outlook

We presented here a statistical approach to deformation-
induced damage, enabled by the use of experimental and
analytical automation in two SEM-based analyses employing
additional EDX data or a deep learning based classifica-
tion of images. Both methods were shown to deliver larger
and more statistically sound data from sample areas of
technological relevance. They were in particular compared
with each other and with light microscopy, as the typically
employed method for large area characterization:

e With deviations in the range of few %, the two proposed
automated SEM-imaging approaches can reliably detect
and quantify the smaller (<1 pm) while maintaining
experimental efficiency due to their high level of auto-
mation.

e The additional characterization by means of EDX and
deep-learning based classification allows separation of
deformation- and inclusion induced voids.

e Light microscopy cannot to resolve the majority of defor-
mation-induced voids to accurately quantify their area
or unravel their mechanisms of origin, and can therefore
only serve as a quick and efficient tool to qualitatively
characterize damage in the examined dual-phase steel
grade.

In the future, the results from micro-cantilever char-
acterization of local fracture properties can be correlated
with the void area statistics from the two imaging meth-
ods to gain a deeper understanding of the critical size and
impact of voids on the microstructural behavior. For duc-
tile microstructure constituents, the presented linear elastic
model will have to be extended to elasto-plastic fracture
mechanics and the micro-fracture testing supplemented by
other micromechanical methods measuring the resistance
to plastic flow, e.g. nanoindentation or microcompres-
sion. These coupled results about the fracture behavior
of microstructural constitutents and statistical informa-
tion about damage sites, quantity and spatial distribution
are valuable data for both microscale damage modelling
approaches as well as technological developments of dam-
age-tolerant materials and process design.

Even without direct coupling to local mechanical test-
ing, the presented characterization tools using automated
imaging at high resolution, void recognition and classifica-
tion will now enable more detailed studies of void forma-
tion on a technologically and statistically relevant scale
to not only lead to new insights into fundamental damage
mechanisms but their impact on the material behaviorand
the resulting properties of products after forming.
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